翻訳と辞書 |
Epigenetics of physical exercise : ウィキペディア英語版 | Epigenetics of physical exercise
Epigenetics of physical exercise is the study of epigenetic modifications resulting from physical exercise to the genome of cells. Epigenetic modifications are heritable alterations that are not due to changes in the sequence of nucleotides.〔 Epigenetic modifications, such as histone modifications and DNA methylation, alter the accessibility to DNA and change chromatin structure, thereby regulating patterns of gene expression. Methylated histones can act as binding sites for certain transcription factors due to their bromodomains and chromodomains. Methylated histones can also prevent the binding of transcription factors by hiding the transcription factor's recognition site, which is usually found on the major groove of DNA. The methyl groups bound to the cytosine residues lie in the major groove of DNA, the same region most transcription factors use to read a DNA sequence. A common epigenetic tag found in DNA is the covalent attachment of a methyl group to the C5 position of the cytosine found in CpG dinucleotide sequences.〔 CpG methylation is an important mechanism of transcriptional silencing. Methylation of CpG islands is shown to reduce gene expression by the formation of tightly condensed heterochromatin that is transcriptionally inactive. CpG sites in a gene are most commonly found in the promoter regions of a gene while also being present in non promoter regions. The CpG sites in non promoter regions tend to be constitutively methylated, causing transcription machinery to ignore them as possible promoters. The CpG site near promoter regions are mostly left unmethylated until a cell decides to methylate them and repress transcription. Methylation of CpGs in promoter regions result in the transcriptional silencing of a gene. Environmental factors including physical exercise have been shown to have a beneficial influence on epigenetic modifications. == Epigenetics of Physical Exercise and Cancer ==
Physical exercise leads to epigenetic modifications that can have beneficial effects in cancer patients. The effect of physical exercise on DNA methylation patterns leads to increased expression of genes associated with tumor suppression and decreased expression of oncogenes. Cancer cells have non-normal patterns of DNA methylation including hypermethylation in promoter regions for tumor-suppressing genes and hypomethylation in promoter regions of oncogenes.〔 These epigenetic mutations in cancer cells cause the cell to grow and divide uncontrollably, resulting in tumorigenesis. Physical exercise has been shown to reduce and even reverse these epigenetic mutations, increasing expression levels of tumor-suppressing genes and decreasing expression levels of oncogenes. Hypermethylation in the promoter regions of tumor suppressor genes is thought to help cause some forms of cancer. The hypermethylation in the promoter regions of the tumor suppressing genes APC and RASSF1A are common epigenetic markers for cancer. The APC gene functions to make sure cells divide properly and maintain a correct number of chromosomes after division has completed. The RASSF1A gene product interacts with the DNA repair protein XPA. Physical exercise has been shown to decrease and even reverse these promoter hypermethylation, lowering the risk of the development of cancer.〔 Decreased hypermethylation patterns reveal a transcriptionally accessible promoter region, allowing for increased expression of the tumor suppressing genes. Physical exercise increases levels of eustress, or good stress, on the body. This eustress stimulates epigenetic modifications affecting the DNA genome of cancer cells. Environmental conditions, such as eustress, strongly induces expression of the tumor suppressor TP53 gene by influencing epigenetic modifications to be made to the cancer cells genome.〔 The TP53 gene codes for the p53 protein, a protein important in the apoptotic pathway of programmed cell death. The p53 protein is important for the regulation of cell growth and apoptosis, so hypermethylation of the TP53 promoter region are common markers associated with the development of cancer. Other than methylation patterns affecting expression of TP53, microRNAs and antisense RNAs control the levels of the p53 protein by regulating expression of the p53 coding TP53 gene.〔
抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)』 ■ウィキペディアで「Epigenetics of physical exercise」の詳細全文を読む
スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース |
Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.
|
|